RelativeL-RittOrderOfEntireDirichletSeries

Arvind Kumar

Department of Mathematics and Astronomy,
University of Lucknow, Lucknow-226007
email: arvind.k1001@gmail.com

Anupama Rastogi

Department of Mathematics and Astronomy, University of Lucknow, Lucknow-226007
email: anupmarastogi13121993@gmail.com

Abstract

Recently Lahiri and Banerjee [1] have introduced the concept of Ritt-order of an entire Dirichlet Series and proved sum and product theorems. They as obtained Ritt order for derivatives. In this paper, we introduced the concept of L-Ritt order and discuss it for sum, products and derivatives of functions.

Keywords: Entire dirichlet series, Ritt order, relative L - Ritt order, property (A).

1. Introduction, Definition and Lemmas

For entire functionsg g_{1} and g_{2} let $\mathrm{G}_{1}(\mathrm{r})=\max \left\{g_{1}(z)|:|z|=r\}\right.$ and
$\mathrm{G}_{2}(\mathrm{r}) \max \left\{\left|g_{2}(z)\right|:|z|=r\right\}$.
If g_{1} is non constant then $G_{1}(r)$ is strictly increasing and a continuous function of r and its inverse $\mathrm{G}_{1}^{-1}:\left(\mid g_{1}(0), \infty\right) \rightarrow(0, \infty)$ exits and $\lim _{R \rightarrow \infty} G_{1}^{-1}(R)=\infty$.(1.1)

Bernal [5] introduced the definition of relative order of g_{1} with respect to g_{2} denoted by $\rho_{g_{2}}\left(g_{1}\right)$ as follows
$\rho_{g_{2}}\left(g_{1}\right)=\inf \left\{\mu>0: G_{1}(r)<G_{2}\left(r^{\mu}\right)\right.$ forallr $\left.>r_{0}(\mu)>0\right\}$.

Let $f(s)$ be an entire function of the complex variable $s=\sigma+$ it defined by everywhere absolutely convergent Dirichlet series $\sum_{n=1}^{\infty} a_{n} e^{s \lambda_{n}}(1.3)$
where $0<\lambda_{n}<\lambda_{n+1}(n \geq 1), \lambda_{n} \rightarrow \infty$ as $n \rightarrow \infty$ and $a_{n}^{\prime} s$ are complex constants.
If σ_{c} and σ_{a} denote respectively the abscissa of convergence and absolute convergence of (1.3) then in this case clearly $\sigma_{c}=\sigma_{a}=\infty$.

Let $F(\sigma)=\underset{-\infty<t<\infty}{l . u . b|f(\sigma+i t)|, ~}$
Then the Ritt order [16] of $f(s)$ denoted by $\rho(f)$ is given by
$\rho(f)=\lim _{\sigma \rightarrow \infty} \sup \frac{\log \log F(\sigma)}{\sigma}=\lim _{\sigma \rightarrow \infty} \sup \frac{\log ^{[2]} F(\sigma)}{\sigma}$.
In other words $\rho(f)=\inf \{\mu>0: \log F(\sigma)<\exp (\sigma \mu)$ forall $\sigma>R(\mu)\}$.(1.6)
Similarly the lower Ritt order of $f(s)$ denoted by $\lambda(f)$ may be defined.
In the paper we prove sum results on the related to relative L-Ritt order of an entire Dirichlet series. where $L=L(\sigma)$ is a positive continuous function increasing slowly i.e. $L(a \sigma) \approx L(\sigma)$ as $\sigma \rightarrow \infty$ for every constants a. In the paper we do not explain the standard definitions and notations in the theory of entire functions as those are available in [6].The following definitions are well known .

Definition 1.The relative Ritt order of $f(s)$ with respect to an entire function $g(s)$ is defined by $\rho_{g}(f)=\inf \{\mu>0: \log F(\sigma)<G(\sigma \mu)$ For all large $\sigma\}(1.7)$
where $G(r)=\max \left\{g(s)|:|s|=r\}\right.$. Clearly $\rho_{g}(f)=\rho(f)$ if $g(s)=e^{s}$. The following analogous definition from [5] will be needed.

Definition 2.A nonconstant entire function $g(s)$ is said to have the property (A) if for any $\delta>1$ and positive $\sigma,[G(\sigma)]^{2} \leq G\left(\sigma^{\delta}\right)$ holds where $G(\sigma)=\max \{|g(s)|:|s|=\sigma\}$.

Definition 3.The L-Ritt order $\rho_{f}^{L} \equiv \rho^{L}(f)$ and the L-Ritt lower order $\lambda_{f}^{L} \equiv \lambda^{L}(f)$ of $f(s)$ are defined as follows respectively

$$
\begin{equation*}
\rho^{L}(f)=\lim _{\sigma \rightarrow \infty} \sup \frac{\log ^{[2]} F(\sigma)}{\sigma L(\sigma)}(1.8) \lambda^{L}(f)=\lim _{\sigma \rightarrow \infty} \inf \frac{\log ^{[2]} F(\sigma)}{\sigma L(\sigma)} \tag{1.9}
\end{equation*}
$$

Where $\log ^{[k]} x=\log \left(\log ^{[k-1]} x\right)$ for $k=1,2,3, \ldots$ and $\log ^{[0]} x=x$. Similarly one can define the relative L-Ritt and relative lower L-Ritt order of $f(s)$

Definition 4. The relative L-Ritt order $\rho_{g}^{L}(f)$ and the relative lower L-Ritt order $\lambda_{g}^{L}(f)$ of $f(s)$ with respect to entire $g(s)$ are respectively defined as

$$
\begin{equation*}
\rho_{g}^{L}(f)=\lim _{\sigma \rightarrow \infty} \sup \frac{G^{-1} \log F(\sigma)}{\sigma L(\sigma)}(1.10) \lambda_{g}^{L}(f)=\lim _{\sigma \rightarrow \infty} \inf \frac{G^{-1} \log F(\sigma)}{\sigma L(\sigma)} \tag{1.11}
\end{equation*}
$$

Bernal [5] has proved the following.
Lemma1 [5].If $\alpha>1, \quad 0<\beta<\alpha$ then $G(\alpha \sigma)>\beta G(\sigma)$ for all large σ.
Lemma2 [5].If g is transcendental with $g(0)=0$ then for all large σ and $0<\delta<1$.

$$
G\left(\sigma^{\delta}\right)<\bar{G}(\sigma)<G(2 \sigma) \text { where } \bar{G}(\sigma)=\max \left\{\left|g^{\prime}(z)\right|:|z|=\sigma\right\}
$$

After Bernal, several papers on relative order of entire functions have appeared in the literature where growing interest of researcher on this topic has been noticed (see for example [2],[3],[4],[12],[13],[14], [15],[16]). During the past decades, several authors (see for example [17], [18], [20]) made close investigation on the properties of entire Dirichlet series related to Ritt order.
2.Main Results: Following the sections 1, have proved the following theorem.

Theorem 1. (a) $\quad \rho_{g}^{L}(f)=\lim _{\sigma \rightarrow \infty} \sup \frac{G^{-1} \log F(\sigma)}{\sigma L(\sigma)}$.
(b) If $F_{1}(\sigma) \leq F_{2}(\sigma)$ for all large σ, then $\rho_{g}^{L}\left(f_{1}\right) \leq \rho_{g}^{L}\left(f_{2}\right)$.

Proof: (a) If $\varepsilon>0$ is arbitrary then from the definition.

$$
\begin{equation*}
\rho_{g}^{L}(f)+\varepsilon>\frac{G^{-1} \log F(\sigma)}{\sigma L(\sigma)} \text { forall large } \sigma_{(2} \tag{2.1}
\end{equation*}
$$

and there exist a sequence of value $\sigma=\sigma_{n}$ tending to infinity.

$$
\begin{aligned}
& \frac{G^{-1} \log F\left(\sigma_{n}\right)}{\sigma_{n} L\left(\sigma_{n}\right)}>\rho_{g}^{L}(f)-\varepsilon(2.2) \text { From (2.1) and (2.2) } \\
& \lim _{\sigma \rightarrow \infty} \sup \frac{G^{-1} \log F(\sigma)}{\sigma L(\sigma)}=\rho_{g}^{L}(f)
\end{aligned}
$$

Proof:(b) For arbitrary $\varepsilon>0$ and for all large σ, we can write from (a).

$$
F_{2}(\sigma)<\exp \left[G\left\{\sigma L(\sigma)\left(\rho_{g}^{L}\left(f_{2}\right)+\varepsilon\right)\right\}\right]
$$

Since $F_{1}(\sigma) \leq F_{2}(\sigma)$ for all large σ, we obtain
$\rho_{g}^{L}\left(f_{1}\right)=\lim _{\sigma \rightarrow \infty} \frac{G^{-1} \log F_{1}(\sigma)}{\sigma L(\sigma)} \leq \rho_{g}^{L}\left(f_{2}\right)+\varepsilon$
Since $\varepsilon>0$ is arbitrary $\rho_{g}^{L}\left(f_{1}\right) \leq \rho_{g}^{L}\left(f_{2}\right)$.

2.1Sum and Product Theorems

In this section, we assume that f_{1}, f_{2} etc. are entire functions of s defined by everywhere absolutely convergent ordinary Dirichlet series $\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}, \sum_{n=1}^{\infty} \frac{b_{n}}{n^{s}}$ etc. The product of two such series is considered by Dirichlet product method, which is also everywhere absolutely convergent (see [9].pp 66).

Theorem 2.Let $g(s)$ be an entire function having the property (A).Then
(i) $\quad \rho_{g}^{L}\left(f_{1} \pm f_{2}\right) \leq \max \left\{\rho_{g}^{L}\left(f_{1}\right), \rho_{g}^{L}\left(f_{2}\right)\right\} \quad$ Sign of equality holds when $\rho_{g}^{L}\left(f_{1}\right) \neq \rho_{g}^{L}\left(f_{2}\right)$
and \quad (ii) $\rho_{g}^{L}\left(f_{1} f_{2}\right) \leq \max \left\{\rho_{g}^{L}\left(f_{1}\right) \rho_{g}^{L}\left(f_{2}\right)\right\}$.
Proof: (i)We may suppose that $\rho_{g}^{L}\left(f_{1}\right)$ and $\rho_{g}^{L}\left(f_{2}\right)$ both are finite, because in the contrary case the inequality follows immediately. We prove (i) for addition only, because the proof for
subtraction is analogous.
Let $\quad f=f_{1}+f_{2}, \rho=\rho_{g}^{L}(f) \rho_{i}^{L}=\rho_{g}^{L}\left(f_{i}\right) i=1,2$ and $\quad \rho_{g}^{L}\left(f_{1}\right) \leq \rho_{g}^{L}\left(f_{2}\right)$.
For arbitrary $\quad \varepsilon>0$ and for all large σ, we have from Theorem 1(a)

$$
\begin{aligned}
& F_{1}(\sigma)<\exp \left[G\left(\sigma L(\sigma)\left(\rho_{g}^{L}\left(f_{1}\right)+\varepsilon\right)\right)\right] \\
& \leq \exp \left[G\left(\sigma L(\sigma)\left(\rho_{g}^{L}\left(f_{2}\right)+\varepsilon\right)\right)\right] \\
& \text { and } F_{2}(\sigma)<\exp \left[G(\sigma L(\sigma))\left(\rho_{g}^{L}\left(f_{2}\right)+\varepsilon\right)\right] \text { So for all large } \sigma F(\sigma) \leq F_{1}(\sigma)+F_{2}(\sigma) \\
& \leq 2 \exp \left[G\left(\sigma L(\sigma)\left(\rho_{g}^{L}\left(f_{2}\right)+\varepsilon\right)\right)\right] \\
& <\exp \left[G\left(\sigma L(\sigma)\left(\rho_{g}^{L}\left(f_{2}\right)+\varepsilon\right)\right)\right]^{2}, \text { since for all } x, 2 \exp (x)<\exp \left(x^{2}\right) \\
& \quad \leq \exp \left[G\left(\sigma L(\sigma)\left(\rho_{g}^{L}\left(f_{2}\right)+\varepsilon\right)\right)\right]^{\delta} \text { For every } \delta>1 \text {,by property (A). Therefore } \\
& \qquad \frac{G^{-1} \log F(\sigma)}{\sigma L(\sigma)}<\left\{\rho_{g}^{L}\left(f_{2}\right)+\varepsilon\right\}^{\delta} \sigma^{\delta-1}\{L(\sigma)\}^{\delta-1} \quad \text { for all large } \sigma
\end{aligned}
$$

Taking first $\delta \rightarrow 1+0$ and then limit superior as $\sigma \rightarrow \infty$ and nothing that $\varepsilon>0$ is arbiyrary, we obtain $\rho_{g}^{L}(f)<\rho_{g}^{L}\left(f_{2}\right)$. This proves the first part of (i).

For the second part of (i), let $\rho_{g}^{L}\left(f_{1}\right)<\rho_{g}^{L}\left(f_{2}\right)$.
andsuppose that $\quad \rho_{g}^{L}\left(f_{1}\right)<\mu<\lambda<\rho_{g}^{L}\left(f_{2}\right)$.
Then for all large $\sigma F_{1}(\sigma)<\exp [G(\sigma L(\sigma) \mu)](2.3)$
and there exist an increasing sequence $\left\{\sigma_{n}\right\}, \sigma_{n} \rightarrow \infty$
$F_{2}\left(\sigma_{n}\right)>\exp \left[G\left(\sigma_{n} L\left(\sigma_{n}\right) \lambda\right)\right]$ for $n=1,2,3, \ldots$
Using Lemma 1 , by setting $\alpha=\frac{\lambda}{\mu}, r=\sigma \mu, \beta=1+\varepsilon, 0<\varepsilon<1$ such that $1<\beta<\alpha$, we obtain

$$
G\left(\frac{\lambda}{\mu} \sigma \mu\right)>(1+\varepsilon) G(\sigma \mu)
$$

i.e. $\quad G(\lambda \sigma)>(1+\varepsilon) G(\sigma \mu)$

Therefore using (2.3) and (2.4) and the fact that $G(\sigma)>\frac{\log 2}{\varepsilon}$ for all large σ, we obtain

$$
F_{2}\left(\sigma_{n}\right)>\exp \left[G\left(\sigma_{n} L\left(\sigma_{n}\right) \cdot \lambda\right)\right]
$$

$>\exp \left[(1+\varepsilon) G\left(\sigma_{n} L\left(\sigma_{n}\right) \cdot \mu\right)\right]$
$>2 \exp \left[G\left(\sigma_{n} L\left(\sigma_{n}\right) \cdot \mu\right)\right]$
$>2 F_{1}\left(\sigma_{n}\right)$, for all large n. (2.5)

Now

$$
F\left(\sigma_{n}\right) \geq F_{2}\left(\sigma_{n}\right)-F_{1}\left(\sigma_{n}\right)
$$

$>F_{2}\left(\sigma_{n}\right)-\frac{1}{2} F_{2}\left(\sigma_{n}\right)$, using (2.5)
$=\frac{1}{2} F_{2}\left(\sigma_{n}\right)$
$>\frac{1}{2} \exp \left[G\left(\sigma_{n} L\left(\sigma_{n}\right) \cdot \lambda\right)\right]$, from (2.4)
$>\exp \left[(1-\varepsilon) G\left(\sigma_{n} L\left(\sigma_{n}\right) \cdot \lambda\right)\right]$, for all large n.

Let $\quad \rho_{g}^{L}\left(f_{1}\right)<\lambda_{1}<\lambda<\rho_{g}^{L}\left(f_{2}\right)$, and $0<\varepsilon<\frac{\lambda-\lambda_{1}}{\lambda}$ (which is clearly permissible).
Using Lemma 1, by setting $\alpha=\frac{\lambda}{\lambda_{1}}, \beta=\frac{1}{1-\varepsilon}, r=\sigma \lambda_{1}$, we have, because $0<\beta<\alpha$

$$
G\left(\frac{\lambda}{\lambda_{1}} \sigma \lambda_{1}\right)>\frac{1}{1-\varepsilon} G\left(\sigma \lambda_{1}\right),
$$

$$
\text { i.e. } \quad(1-\varepsilon) G(\lambda \sigma)>G\left(\sigma \lambda_{1}\right) \text {. }
$$

Hence for all large $n, F\left(\sigma_{n}\right)>\exp \left[G\left(\sigma_{n} L\left(\sigma_{n}\right) \cdot \lambda_{1}\right)\right]$,

$$
\text { i.e. } \frac{G^{-1} \log F\left(\sigma_{n}\right)}{\sigma_{n} L\left(\sigma_{n}\right)}>\lambda_{1} \text { for all large } n \text {. }
$$

This gives $\rho_{g}^{L}(f) \geq \lambda_{1}$. Since $\lambda \& \lambda_{1}$ both are arbitrary in the interval $\left(\rho_{g}^{L}\left(f_{1}\right), \rho_{g}^{L}\left(f_{2}\right)\right)$, We have $\quad \rho_{g}^{L}(f) \geq \rho_{g}^{L}\left(f_{2}\right)=\max \left\{\rho_{g}^{L}\left(f_{1}\right), \rho_{g}^{L}\left(f_{2}\right)\right\}$,
i.e. $\rho_{g}^{L}\left(f_{1}+f_{2}\right) \geq \max \left\{\rho_{g}^{L}\left(f_{1}\right), \rho_{g}^{L}\left(f_{2}\right)\right\}$.

This in conjunction with the first part of (i) gives
$\rho_{g}^{L}\left(f_{1}+f_{2}\right)=\max \left\{\rho_{g}^{L}\left(f_{1}\right), \rho_{g}^{L}\left(f_{2}\right)\right\}$
which proves (i) completely.
(ii) Let $f=f_{1} f_{2}$ and the notations $\rho_{g}^{L}(f), \rho_{g}^{L}\left(f_{1}\right)$ and $\rho_{g}^{L}\left(f_{2}\right)$ have the analogous meanings as in (i). If $\rho_{g}^{L}\left(f_{1}\right) \leq \rho_{g}^{L}\left(f_{2}\right)$ then for arbitrary $\varepsilon>0$ for all large σ
$F(\sigma) \leq F_{1}(\sigma) \cdot F_{2}(\sigma)$
$<\exp \left[G\left(\sigma L(\sigma)\left(\rho_{g}^{L}\left(f_{1}\right)+\varepsilon\right)\right)\right] \exp \left[G\left(\sigma L(\sigma)\left(\rho_{g}^{L}\left(f_{2}\right)+\varepsilon\right)\right)\right]$
$\leq \exp \left[2 G\left(\sigma L(\sigma)\left(\rho_{g}^{L}\left(f_{2}\right)+\varepsilon\right)\right)\right]$
$\leq \exp \left[G\left(\sigma L(\sigma)\left(\rho_{g}^{L}\left(f_{2}\right)+\varepsilon\right)\right)\right]^{2}$
$\leq \exp \left[G\left\{\sigma L(\sigma)\left(\rho_{g}^{L}\left(f_{2}\right)+\varepsilon\right)\right\}^{\delta}\right]$ for every $\delta>1$, by property (A).
The above gives $\frac{G^{-1} \log F(\sigma)}{\sigma L(\sigma)} \leq\left(\rho_{g}^{L}\left(f_{2}\right)+\varepsilon\right)^{\delta} \sigma^{\delta-1}(L(\sigma))^{\delta-1}$ for all large σ.Letting $\delta \rightarrow 1+0$ and then considering the fact that $\varepsilon>0$ is arbitrary, we obtain $\rho_{g}^{L}(f) \leq \rho_{g}^{L}\left(f_{2}\right)$ which proves the theorem.

2.2 Relative L-Ritt order of the derivative

Theorem 3. Let $f(s)$ be an entire function defined by the Dirichlet series (1) having finite L-Ritt order $\rho^{L}(f)$ and $f^{\prime}(s)$ be its derivative .Then $\rho_{g}^{L}(f)=\rho_{g}^{L}\left(f^{\prime}\right)$ where $g(s)$ is a transcendental entire function.

Proof: It is known([17], p139) that for all large value of σ and arbitrary $\varepsilon>0$

$$
\begin{equation*}
F(\sigma)-\varepsilon<\left(\sigma L(\sigma)-\sigma_{0} L\left(\sigma_{0}\right)\right) F^{\prime}(\sigma)+\left|f\left(s_{0}\right)\right| \tag{3.1}
\end{equation*}
$$

where $s_{0}=\sigma_{0}+i t_{0}$ is a fixed complex number and $F^{\prime}(\sigma)=$ l..u.b. $_{-\infty<c \infty}\left|f^{\prime}(\sigma+i t)\right|$.
The inequality (3.1) implies $F(\sigma)<(\sigma L(\sigma)) F^{\prime}(\sigma)+A+\varepsilon$,
where A is a constant. Taking logarithm, we see that for all large value of σ $\log F(\sigma)<\log \left[(\sigma L(\sigma)) F^{\prime}(\sigma)\right]+B_{\sigma}$ Where $B_{\sigma} \rightarrow \infty$ as $\sigma \rightarrow \infty$
$<\log F^{\prime}(\sigma)+\log (\sigma L(\sigma))+B_{\sigma}$
$<\log F^{\prime}(\sigma)+\sigma L(\sigma)\left(\rho_{g}^{L}\left(f^{\prime}\right)+\varepsilon\right)+B_{\sigma}$
$<\log F^{\prime}(\sigma)+\sigma L(\sigma)\left(\rho_{g}^{L}\left(f^{\prime}\right)+2 \varepsilon\right)$
$<G\left[\sigma L(\sigma)\left(\rho_{g}^{L}\left(f^{\prime}\right)+\varepsilon\right)\right]+\sigma L(\sigma)\left(\rho_{g}^{L}\left(f^{\prime}\right)+2 \varepsilon\right)$
$<G\left[\sigma L(\sigma)\left(\rho_{g}^{L}\left(f^{\prime}\right)+2 \varepsilon\right)\right](3.2)$
because $\frac{G\left[(\sigma L(\sigma))\left(\rho_{g}^{L}\left(f^{\prime}\right)+\varepsilon\right)\right]+(\sigma(\sigma))\left(\rho_{g}^{L}\left(f^{\prime}\right)+2 \varepsilon\right)}{G\left[(\sigma L(\sigma))\left(\rho_{g}^{L}\left(f^{\prime}\right)+2 \varepsilon\right)\right]}<1 \quad$ for all large σ on using
([5],(d),p213) and ([6],p165).
From (3.2) $\quad \rho_{g}^{L}(f)=\lim _{\sigma \rightarrow \infty} \sup \frac{G^{-1} \log F(\sigma)}{\sigma L(\sigma)} \leq \rho_{g}^{L}\left(f^{\prime}\right)+2 \varepsilon$.
Since $\varepsilon>0$ is arbitrary, $\rho_{g}^{L}(f)=\rho_{g}^{L}\left(f^{\prime}\right)$
To obtain the reverse inequality, we use the following inequality from ([17], p139)So $F^{\prime}(\sigma)-\varepsilon \leq \frac{1}{\delta} F(\sigma+\delta)$
where $\varepsilon>0$ is arbitrary and $\delta>0$ is fixed.

$$
\begin{aligned}
& \text { So } \log F^{\prime}(\sigma) \leq \log \left(\frac{1}{\delta} F(\sigma+\delta)+\varepsilon\right) \\
& =\log F(\sigma+\delta)+\log \left(\frac{1}{\delta}+\frac{\varepsilon}{F(\sigma+\delta)}\right) \\
& \leq G\left[(\sigma+\delta) L(\sigma+\delta)\left(\rho_{g}^{L}(f)+\varepsilon\right)\right]+\log \left(\frac{1}{\delta}+\frac{\varepsilon}{F(\sigma+\delta)}\right) \\
& \leq G\left[\{(\sigma+\delta) L(\sigma+\delta)\}\left(\rho_{g}^{L}(f)+2 \varepsilon\right)\right] \text { for all large } \sigma \text {. }
\end{aligned}
$$

Therefore $\rho_{g}^{L}\left(f^{\prime}\right)=\lim _{\sigma \rightarrow \infty} \sup \frac{G^{-1} \log F^{\prime}(\sigma)}{\sigma L(\sigma)} \leq \rho_{g}^{L}(f)+2 \varepsilon$.
Since $\varepsilon>0$ is arbitrary, $\rho_{g}^{L}\left(f^{\prime}\right) \leq \rho_{g}^{L}(f)$ which proves the theorem.
If we assume $g(0)=0$, a simpler proof of the following theorem may be provided which relates the L-Ritt order of f relative to g and to its derivative g^{\prime}.

Theorem 4.Let $f(s)$ be an entire function defined by the Dirichlet series (1) and $g(s)$ be an entire transcendental function with $g(0)$, then
$\frac{1}{2} \rho_{g}^{L}(f) \leq \rho_{g}^{L}(f) \leq \rho_{g}^{L}(f)$.
Proof: Since $g(s)$ is transcendental with $g(0)=0$, we have by Lemma 2 for all large σ and $0<\delta<1$

$$
G\left(\sigma^{\delta}\right)<\bar{G}(\sigma)<G(2 \sigma),
$$

where $\bar{G}(\sigma)=\max \left\{\left|g^{\prime}(s)\right|:|s|=\sigma\right\}$. By computations it follows that
$\frac{1}{2} G^{-1}(\sigma)<G^{-1}(\sigma)<\left[G^{-1}(\sigma)\right]^{\frac{1}{j}}$,
forall large σ. Therefore we can write for all large σ
$\frac{1}{2} \frac{G^{-1}[\log (F(\sigma))]}{\sigma L(\sigma)}<\frac{G^{-1}[\log (F(\sigma))]}{\sigma L(\sigma)} \leq \frac{\left\{G^{-1}[\log (F(\sigma))]\right]^{\frac{1}{\delta}}}{\sigma L(\sigma)}$, since $\log F(\sigma)$ is increasing and tending to infinity as $\sigma \rightarrow \infty$ (see [8], [9]).Letting $\delta \rightarrow 1-0$, we obtain for all large σ
$\frac{1}{2} \frac{G^{-1} \log F(\sigma)}{\sigma L(\sigma)}<\frac{G^{-1} \log F(\sigma)}{\sigma L(\sigma)} \leq \frac{G^{-1} \log F(\sigma)}{\sigma L(\sigma)}$,
and this gives $\quad \frac{1}{2} \rho_{g}^{L}(f) \leq \rho_{g}^{L}(f) \leq \rho_{g}^{L}(f)$.
which proves the theorem.

References

[1].Dibyendu Banerjee and B.K.Lahiri, Relative Ritt order of an entire Dirichlet series.Int.J.contemp.Math. Science, Vol.5, (2010).no.44, 2157-2165.
[2].Dibyendu Banerjee, A note on relative order of meromorphic functions, Bull. Cal.Math.Soc.,98 (1) (2006), 25-30.
[3].Dibyendu Banerjee and Srimanta Jana, Meromorphic functions of relative order(p,q),Soochow J.Math.,33(3)(2007),343-357.
[4] .Dibyendu Banerjee and Ratan Kumar Dutta, Relative order of an entire function of two complex variables, International.J.of Math.Sci.and Eng.Appls., 1(1) (2007), 141-154.
[5] .L.Bernal,Orden relative de Crecimiento de function enteras.Collect,Math.,39 (1988).209-
229
[6].E.T.Copson, An introduction to the theory of function of complex variables,Oxford University press, (1961).
[7].G.Doetsch. \ddot{U} Ber die obere Grenze des absolution Betrages einer analytischen Funktion auf Geraden, Math.Zeitschr.,8(1920),237-240.
[8].S.Halvarsson,Growth properties of entire function depending on a parameter,Annales.Polonici.Mathematici,14(1)(1996),71-96.
[9]. G.H.Hardy and Marcel Riesz,The General theorey of Dirichlet series,Stechert-Hafner service Agency,New York and Londan,(1964).
[10].C.O.Kiselman,Order and type as measure of growth for convex or entire function,Proc,Lond.Math.Soc.,66(3)(1993),152-186.
[11]. C.O.Kiselman,Plurisubharmonic functions and potential theorey in several complex variables, a contributions to the book project, Development of Math. Annalas 1950-2000,edited by Jean-Paul Pier.
[12].B.K.Lahiri and Dibyendu Banerjee,Relative order of entire and meromorphic function ,Proc.Nat.Acad.Sci.India,72(A)(iii)(1999),339-354
[13].B.K. Lahiri and Dibyendu Banerjee,Generalised relative order of entire function ,Proc.Nat.Acad.Sci.,India,72(a)(iv)(2002),351-371.
[14].B.K.Lahiri and Dibyendu Banerjee,Entire function of relative order (p,q),Soochow J.Math.,31(4)(2005),497-513.
[15].B.K.Lahiri and Dibyendu Banerjee,Relative order of meromorphic function,Proc.Nat.Acad.Sci.India.,75(a)(ii)(2005),129-135.
[16]. B.K.Lahiri and Dibyendu Banerjee, A note on relative order of entire function,Bull .Cal.Math.Soc.,97(3)(2005).201-206.
[17].Q.I.Rahman, The Ritt order of the derivative of an entire function,Annales Polonici Mathematici,17(1965),137-140.
[18].C.T.Rajagopal and A.R.Reddy, A note on entire function represented by Dirichlet series,Annales Polonici. Mathmatics.,17(1965)137-140.
[19] .J.F.Ritt,On certain point in the theorey of Dirichlet series,Amer.Jour.Math.,50(1928),73-86.
[20] .R.P.Srivastav and R.K.Ghosh,On entire function represented by Dirichlet series,Annales Polonici Mathmatici,13(1963),93-100.

